Robust Adaptive-Scale Parametric Model Estimation

نویسنده

  • Hanzi Wang
چکیده

for Computer Vision Hanzi Wang and David Suter, Senior Member, IEEE Department of Electrical and Computer Systems Engineering Monash University, Clayton Vic. 3800, Australia. {hanzi.wang ; d.suter}@eng.monash.edu.au Abstract Robust model fitting essentially requires the application of two estimators. The first is an estimator for the values of the model parameters. The second is an estimator for the scale of the noise in the (inlier) data. Indeed, we propose two novel robust techniques: the Two-Step Scale estimator (TSSE) and the Adaptive Scale Sample Consensus (ASSC) estimator. TSSE applies nonparametric density estimation and density gradient estimation techniques, to robustly estimate the scale of the inliers. The ASSC estimator combines Random Sample Consensus (RANSAC) and TSSE: using a modified objective function that depends upon both the number of inliers and the corresponding scale. ASSC is very robust to discontinuous signals and data with multiple structures, being able to tolerate more than 80% outliers. The main advantage of ASSC over RANSAC is that prior knowledge about the scale of inliers is not needed. ASSC can simultaneously estimate the parameters of a model and the scale of the inliers belonging to that model. Experiments on synthetic data show that ASSC has better robustness to heavily corrupted data than Least Median Squares (LMedS), Residual Consensus (RESC), and Adaptive Least K’th order Squares (ALKS). We also apply ASSC to two fundamental computer vision tasks: range image segmentation and robust fundamental matrix estimation. Experiments show very promising results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers

In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004